研究成果

research

テキストデータを利用したS-APIR指数の実用化

リサーチリーダー

APIR主席研究員 関 和広 甲南大学知能情報学部教授

 

研究目的

従来、マクロ経済の動向を把握するには、集計データを用いることが一般的である。しかし、集計データは、リアルアイム性に欠けており、ミクロの経済要因を知るには不十分という課題がある。一方、昨今の情報技術の急速な進展により、国内外の経済活動において生成される大規模なデータ(ビッグデータ)が様々な形で利用可能になり始めている。きわめて豊富な情報を内包しているビッグデータの活用は、マクロ経済のより精緻な情勢判断と予測において、有効であると考えられる。このため、本研究ではビッグデータの一つであるテキストデータを利用して、経済の動向を把握することを試みる。

 

研究内容

S-APIR指数(景気関連指数)を推定するため、リカレント・ニューラル・ネットワーク(Recurrent Neural Network,以下RNN)に加え、Google社が開発した最新の学習モデルであるBERT(Bidirectional Encoder Representations from Transformers)を用いる。BERTは、RNNのように単語の順序を考慮した上では学習することはせず、文中の全ての単語同士の依存関係を学習する。その処理を基本として、S-APIR指数を推定するモデルの精度向上を図る。

 

<研究体制>

研究統括

稲田 義久  APIR研究統括兼数量経済分析センター長、甲南大学名誉教授

リサーチリーダー

関 和広   APIR主席研究員、甲南大学知能情報学部教授

リサーチャー

松林 洋一  APIR上席研究員、神戸大学大学院経済学研究科教授
生田 祐介  大阪産業大学経営学部准教授

 

期待される成果と社会還元のイメージ

新聞記事のテキストデータから景況感を推定するモデルを構築し、その出力値をS-APIR指数と称している。これを政府による既存の景況感指数と比較することで、我々のモデルが有する特徴を明らかにする。その結果を踏まえて、「S-APIR指数」を一般に公表していく。

景気動向を代理する「S-APIR指数」を見ることで、企業の経営判断を行う際の議論に使えるようにする。そして、国や自治体に対しても、政策決定に活用して頂くことを検討する。具体的に、本研究の成果の一つとして期待できる「単語のデモ・システム」を、ユーザーへ公開する。ユーザー自身が、デモ・システムへ興味ある単語を入力すると、その単語がS-APIR指数にどのような影響を与えているのか知ることができる。例えば、「東京五輪」という単語を入力した場合、ミクロの波及メカニズム(例、建設需要)までは見ることができないが、東京五輪が最終的に景気動向へ正の影響を及ぼすのかどうかを調べるための、きっかけとなる。

研究成果

  • 2022年度報告書が完成しました。 [ 2023-04-03 ]

関連論文

  • 関 和広

    テキストデータを利用したS-APIR指数の実用化

    研究プロジェクト

    研究プロジェクト » 2023年度 » 経済予測・分析軸

    RESEARCH LEADER : 
    関 和広

    ABSTRACT

    リサーチリーダー

    APIR主席研究員 関 和広 甲南大学知能情報学部教授

     

    研究目的

    従来、マクロ経済の動向を把握するには、集計データを用いることが一般的である。しかし、集計データは、リアルアイム性に欠けており、ミクロの経済要因を知るには不十分という課題がある。一方、昨今の情報技術の急速な進展により、国内外の経済活動において生成される大規模なデータ(ビッグデータ)が様々な形で利用可能になり始めている。きわめて豊富な情報を内包しているビッグデータの活用は、マクロ経済のより精緻な情勢判断と予測において、有効であると考えられる。このため、本研究プロジェクトではビッグデータの一つであるテキストデータを利用して、経済の動向を把握することを試みる。

     

    研究内容

    S-APIR指数(景気関連指数)を推定するため、Transformerを用いた大規模言語モデルを利用する。Transformerは、それ以前に用いられていた回帰的ニューラルネットワーク(RNN)のように単語の順番に入力して学習することはせず、文中の全ての単語を一度に入力することで全ての単語同士の依存関係を学習する。その処理を基本として、S-APIR指数を推定するモデルの精度向上を図る。

     

    <研究体制>

    研究統括

    稲田 義久  APIR研究統括兼数量経済分析センター長、甲南大学名誉教授

    リサーチリーダー

    関 和広   APIR主席研究員、甲南大学知能情報学部教授

    リサーチャー

    松林 洋一  APIR上席研究員、神戸大学大学院経済学研究科教授
    生田 祐介  大阪産業大学経営学部准教授
    盧 昭穎  APIR研究員
    吉田 茂一  APIR研究推進部員

     

    期待される成果と社会還元のイメージ

    景気動向を代理する「S-APIR指数」を見ることで、企業の経営判断を行う際の議論に使えるようにする。そして、国や自治体に対しても、政策決定に活用していただくことを検討する。また、本研究の成果の一つとして期待できるデモ・システムを、会員企業に試行的に提供する。システムのユーザー自身が、デモ・システムへ興味ある単語を入力すると、その単語がS-APIR指数にどのような影響を与えているのか知ることができる。例えば、「大阪関西万博」という語を入力した場合、ミクロの波及メカニズム(例、建設需要)までは見ることができないが、大阪関西万博が最終的に景気動向へ正の影響を及ぼすのかどうかを調べるための、きっかけとなる。

  • 生田 祐介

    テキストデータを利用した新しい景況感指標の開発と応用(下)― 応用編:深層学習を利用したテキスト分析 ―

    ディスカッションペーパー

    ディスカッションペーパー

     / DATE : 

    AUTHOR : 
    生田 祐介 / 関 和広 / 松林 洋一

    ABSTRACT

    本稿では、テキストマイニングに基づいて、新聞や雑誌の文字情報から景況感指数の計測を行う際の実践的な手続きについて解説していきます。テキストマイニングの基本的概念については、入門編において紹介しました。文字情報から景気動向を抽出するという試みは、魅力的ですが、基本的なテキストマイニングの手法には限界もあります。最も重要な問題点は、新聞記事等の文章に含まれている単語を単体として取り出して、その単語のみで景気の良し悪しを判定することは適当ではないということです。ここでは、深層学習の代表的な手法であるニューラルネットワークと呼ばれるモデル(およびその修正版)について丁寧に解説を行います。あわせて上巻で紹介した内閣府「景気ウォッチャー調査」をもとに、こうした新たな手法を用いた景況感指数の計測を紹介し、その特性を見ていくことにします。

    PDF